Giải bài 57, 58, 59, 60 trang 165, 166 sách bài tập toán 9 tập 2

Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:

Câu 57 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:

S = p.r

Giải:

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC.

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.

Ta có: ({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}})

(= {1 over 2}.AB.r + {1 over 2}.AC.r + {1 over 2}.BC.r)

(= {1 over 2}(AB + AC + BC).r)

Mà AB + AC + BC = 2p

Nên ({S_{ABC}} = {1 over 2}.2p.r = p.r)

Loigiaihay.com


Câu 58 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E.

a) Tứ giác ADOE là hình gì? Vì sao?

b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm

Giải:

a) Ta có: (OD bot AB Rightarrow widehat {ODA} = 90^circ )

(OE bot AC Rightarrow widehat {OEA} = 90^circ )

(widehat {BAC} = 90^circ ) (gt)

Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật

Lại có: AD = AE (tính chất hai tiếp tuyến giao nhau)

Vậy tứ giác ADOE là hình vuông.

Xem thêm:  Mẫu phiếu phỏng vấn - Mẫu phiếu phỏng vấn sơ tuyển

b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:

(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25)

Suy ra: BC = 5 (cm)

Theo tính chất tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB BD

AE = AC CF

Suy ra: AD + AE = AB BD + (AC CF )

= AB + AC (BD + CF )

= AB + AC (BF + CF )

= AB + AC BC

Suy ra: ( AD = AE = {{AB + AC – BC} over 2} = {{3 + 4 – 5} over 2} = 1 (cm))


Câu 59 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng:

AB + AC = 2(R + r).

Giải:

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn tâm (O) tiếp với AB tại D, AC tại E và BC tại F.

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE +CE)

= AB + AC

Vậy AB = AC = 2 (R + r).


Câu 60 trang 166 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:

Xem thêm:  Mẫu giáo án môn Lịch sử lớp 6 theo công văn 5512

a) (AE = AF = {{a + b + c} over 2})

b) (BE = {{a + b – c} over 2};)

c) (CF = {{a + c – b} over 2})

Giải:

a) Gọi D là tiếp điểm của đường tròn (K) với cạnh BC.

Theo tính chất hai tiếp tuyến cắt nhau ta có:

BE = BD; CD = CF

AE = AB + BE

AF = AC + CF

Suy ra: AE + AF = AB + BE + AC + CF

= AB + AC + (BD + DC)

= AB + AC + BC = c + b + a

Mà AE = AF (tính chất hai tiếp tuyến cắt nhau)

Suy ra: ({rm{AE = AF = }}{{a + b + c} over 2})

b) Ta có: (BE = AE AB = {{a + b + c} over 2} – c = {{a + b – c} over 2})

c) Ta có: (CF = AF AC = {{a + b + c} over 2} – b = {{a + c – b} over 2}.)

Video liên quan

Back to top button